题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线的方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为().
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)曲线上有3个点到曲线的距离等于1,求的值.
【答案】(1);(2)的值为或.
【解析】试题分析:(1)把圆的参数方程移项、平方作和即可得到圆的普通方程.展开两角和的余弦公式,代入得直线的直角坐标方程;
(Ⅱ)曲线是半径为的圆,故所求曲曲线上有3个点到曲线的距离即可转为圆心到直线的距离问题.
试题解析:
(1)由消去参数,得,
所以曲线的普通方程为.
由,得,即,
所以曲线的直角坐标方程.
(2)曲线是以为圆心,以为半径的圆,曲线是直线.
由圆上有3个点到直线的距离等于1,得圆心到直线: 的距离等于2,
即,解得,即的值为或.
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.
参考格式: ,其中.
下面的临界值仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.
年龄 分组 | 抽取份数 | 答对全卷 的人数 | 答对全卷的人数 占本组的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | 27 | 0.9 | |
[40,50) | 10 | 4 | |
[50,60] | 20 | 0.1 |
(1)分别求出, , , 的值;
(2)从年龄在答对全卷的人中随机抽取2人授予“环保之星”,求年龄在的人中至少有1人被授予“环保之星”的概率.