题目内容

11.设D是不等式组$\left\{\begin{array}{l}{x+2y≤10}\\{2x+y≥3}\\{x≤4}\\{y≥1}\end{array}\right.$表示的平面区域,P(x,y)是D中任一点,则|x+y-10|的最大值是8.

分析 作出不等式组对应的平面区域,设z=x+y-10,利用目标函数的几何意义,利用数形结合先求出z的取值范围,即可得到结论.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y-10,得y=-x+z+10,平移直线y=-x+z+10,
由图象可知当直线y=-x+z+10经过点D时,直线y=-x+z+10的截距最小,此时z最小.
由$\left\{\begin{array}{l}{2x+y=3}\\{y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
代入目标函数z=x+y-10得z=1+1-10=-8.
当直线y=-x+z+10经过点B时,直线y=-x+z+10的截距最大,z取得最大值,
由$\left\{\begin{array}{l}{x=4}\\{x+2y=10}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即B(4,3),
此时z=4+3-10=-3.
即-8≤z≤-3,
则3≤|z|≤8,
故|x+y-10|的最大值是8,
故答案为:8

点评 本题主要考查线性规划的应用,利用目标函数的几何意义先求出z=x+y-10的取值范围,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网