题目内容

【题目】等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为 ,M,N分别是AC.BC的中点,则EM,AN所成角的余弦值等于(
A.
B.
C.
D.

【答案】D
【解析】解:设AB=2,作CO⊥面ABDE, OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,
CH= ,OH=CHcos∠CHO=1,
结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
则AN=EM=CH= = + ), =
=
故EM,AN所成角的余弦值 =
故选D.

【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网