题目内容

【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*(Ⅰ)证明:数列{an﹣n}是等比数列
(Ⅱ)记数列{an}的前n项和为Sn , 求证:Sn+1≤4Sn , 对任意n∈N*成立.

【答案】证明:(I)∵an+1=4an﹣3n+1,∴an+1﹣(n+1)=4(an﹣n),a1﹣1=1. ∴数列{an﹣n}是等比数列,首项为1,公比为4.
(II)由(I)可得:an﹣n=4n1 , 解得an=n+4n1
Sn= + = +
Sn+1= +
∴4Sn﹣Sn+1=4× +4× = ﹣1= ≥0.
∴Sn+1≤4Sn , 对任意n∈N*成立.
【解析】(I)由an+1=4an﹣3n+1,变形an+1﹣(n+1)=4(an﹣n),a1﹣1=1.即可证明.(II)由(I)可得:an﹣n=4n1 , 解得an=n+4n1 , 利用等差数列与等比数列的求和公式可得:Sn , Sn+1 . 作差4Sn﹣Sn+1即可得出.
【考点精析】根据题目的已知条件,利用等比数列的通项公式(及其变式)的相关知识可以得到问题的答案,需要掌握通项公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网