ÌâÄ¿ÄÚÈÝ
9£®Èô´æÔÚÖ±ÏßlÓëÇúÏßC1ºÍÇúÏßC2¶¼ÏàÇУ¬Ôò³ÆÇúÏßC1ºÍÇúÏßC2Ϊ¡°Ïà¹ØÇúÏß¡±£¬ÓÐÏÂÁÐËĸöÃüÌ⣺¢ÙÓÐÇÒÖ»ÓÐÁ½ÌõÖ±ÏßlʹµÃÇúÏßC1£ºx2+y2=4ºÍÇúÏßC2£ºx2+y2-4x+2y+4=0Ϊ¡°Ïà¹ØÇúÏß¡±£»
¢ÚÇúÏßC1£ºy=$\frac{1}{2}\sqrt{{x^2}+1}$ºÍÇúÏßC2£ºy=$\frac{1}{2}\sqrt{{x^2}-1}$ÊÇ¡°Ïà¹ØÇúÏß¡±£»
¢Ûµ±b£¾a£¾0ʱ£¬ÇúÏßC1£ºy2=4axºÍÇúÏßC2£º£¨x-b£©2+y2=a2Ò»¶¨²»ÊÇ¡°Ïà¹ØÇúÏß¡±£»
¢Ü±Ø´æÔÚÕýÊýaʹµÃÇúÏßC1£ºy=alnxºÍÇúÏßC2£ºy=x2-xΪ¡°Ïà¹ØÇúÏß¡±£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ¢Ù£ºÁ½ÌõÇúÏ߶¼ÊÇÔ²£¬Ö»ÐèÑо¿Á½Ô²µÄλÖùØϵ¼´¿É£»
¢ÚÈÝÒ×Åжϣ¬Á½ÌõÇúÏßÊǹ²éîË«ÇúÏߣ¨ÔÚxÖáÉÏ·½µÄ²¿·Ö£©£¬Ò×֪ûÓй«ÇÐÏߣ»
¢ÛÒ×ÖªÔ²ÔÚÅ×ÎïÏߵġ°ÄÚ²¿¡±£¬ËùÒÔ²»¿ÉÄÜ´æÔÚ¹«ÇÐÏߣ»
¢ÜÏÈÀûÓõ¼ÊýÇó³öC1µÄÇÐÏߣ¬È»ºó´úÈëÇúÏßC2£¬ÀûÓÃÅбðʽµÈÓÚÁãÇó½â£®
½â´ð ½â£º¢ÙÒ×Öª£»C1£ºÊÇÒÔ£¨0£¬0£©ÎªÔ²ÐÄ£¬r=2µÄÔ²£»C2£ºÊÇÒÔ£¨2£¬-1£©ÎªÔ²ÐÄ£¬r=1µÄÔ²£¬Ô²Ðľà=$\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$£¬´óÓڰ뾶֮²î1£¬Ð¡Óڰ뾶֮ºÍ3£¬¹ÊÁ½Ô²Ïཻ£¬Òò´ËÓÐÁ½ÌõÍ⹫ÇÐÏߣ¬¹Ê¢ÙÕýÈ·£»
¢ÚÒ×Öª£¬ÇúÏßC1£¬C2Êǹ²éîË«ÇúÏߣ¨ËüÃǸ÷×ÔÔÚxÖáÉÏ·½µÄ²¿·Ö£©£¬Òò´ËÁ½ÇúÏßûÓй«ÇÐÏߣ¬¹Ê¢Ú´íÎó£»
¢ÛÒòΪb£¾a£¾0£¬ËùÒÔÔÚͬһ×ø±êϵÄÚ×ö³öËüÃǵÄͼÏóÈçÏ£º
ËùÒÔÁ½ÇúÏß²»»áÓй«ÇÐÏߣ¬¹Ê¢ÛÕýÈ·£»
¢Üµ±a=1ʱ£¬C1£ºy=lnx£¬Ò×ÇóµÃx=1ʱ£¬ÇÐÏß·½³ÌΪy=x-1£»¶ÔÓÚC2£ºµ±x=1ʱ£¬ÇÐÏß·½³Ì2Ϊy=x-1£¬¹Ê¢ÜÕýÈ·£®
ËùÒÔÓÐÈý¸öÃüÌâÕýÈ·£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢ÇÐÏß·½³ÌµÄÇ󷨣¬Í¬Ê±£¬×÷Ϊж¨ÒåÎÊÌ⣬ҪעÒâ¶Ô¡°¸ÅÄµÄÀí½â£®
A£® | 3x-2y-13=0 | B£® | 3x-2y-13=0»òx-2y-3=0 | ||
C£® | x-2y-3=0 | D£® | x-2y-3=0»ò2x+3y-13=0 |
A£® | $\frac{1}{2}$£¨1-$\frac{1}{e}$£© | B£® | $\frac{1}{4}$£¨1-$\frac{1}{e}$£© | C£® | $\frac{1}{e}$ | D£® | 1-$\frac{1}{e}$ |
A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{¦Ð-1}{4}$ | D£® | $\frac{¦Ð-2}{4}$ |
A£® | -$\frac{1}{2}$£¬4 | B£® | 0£¬4 | C£® | -$\frac{1}{4}$£¬2 | D£® | 0£¬2 |