ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©¡¢F£¨1£¬0£©£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª4$\sqrt{2}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµã£¨4£¬0£©×÷ÓëÖ±ÏßlƽÐеÄÖ±Ïßm£¬ÇÒÖ±ÏßmÓëÅ×ÎïÏßy2=4x½»ÓÚP¡¢QÁ½µã£¬ÈôA¡¢PÔÚxÖáÉÏ·½£¬Ö±ÏßPAÓëÖ±ÏßQBÏཻÓÚxÖáÉÏÒ»µãM£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì¼´ÊÇÇóaºÍb£¬¸ù¾Ý¡÷ABF2µÄÖܳ¤Îª4a£¬Çó³öa£¬ÔÚ¸ù¾Ý½¹µã×ø±êÇó³öc£¬ÄÇôb¾Í¿ÉÒÔÇó³ö£®
£¨¢ò£©Éè³öABPQËĵãµÄ×ø±ê£¬¸ù¾ÝÈý½ÇÐεÄÏàËƱȵÃËüÃÇ×Ý×ø±êµÄ¹Øϵ£¬¸ù¾ÝÖ±ÏßlÓëÍÖÔ²·½³ÌµÃµ½Ê½¢Ù£¬ÔÙ¸ù¾ÝÖ±ÏßmÓëÅ×ÎïÏß·½³ÌµÃµ½Ê½¢Ú£¬×îÖյõ½l·½³Ì£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬4a=4$\sqrt{2}$£¬a2-b2=1 ¡£¨2·Ö£©
ËùÒÔa=$\sqrt{2}$£¬b=1 ¡£¨3·Ö£©
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$ ¡£¨4·Ö£©
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬PQÓëxÖáµÄ½»µã¼ÇΪµãN
Ö±ÏßlµÄ·½³ÌΪx=ty-1£¬Ö±ÏßmµÄ·½³ÌΪ£ºx=ty+4
ÒÀÌâÒâµÃ$\frac{A{F}_{1}}{PN}$=$\frac{M{F}_{1}}{MN}$=$\frac{B{F}_{1}}{QN}$
Ôò$\frac{|{y}_{1}|}{|{y}_{3}|}$=$\frac{|{y}_{2}|}{|{y}_{4}|}$£¬¿ÉµÃ$\frac{{y}_{1}}{{y}_{2}}=\frac{{y}_{3}}{{y}_{4}}$£¬Áî$\frac{{y}_{1}}{{y}_{2}}=\frac{{y}_{3}}{{y}_{4}}$=¦Ë£¨¦Ë£¼0£©£¬¡£¨5·Ö£©
ÓÉ$\left\{\begin{array}{l}{x=ty-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$ ÏûÈ¥x£¬µÃ£¨t2+2£©y2-2ty-1=0£¬¡£¨6·Ö£©
Ôò$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{2t}{{t}^{2}+2}}\\{{y}_{1}{y}_{2}=-\frac{1}{{t}^{2}+2}}\end{array}\right.$£¬°Ñy1=¦Ëy2´úÈëÕûÀíµÃ£º$\frac{£¨1+¦Ë£©^{2}}{¦Ë}$=-$\frac{4{t}^{2}}{{t}^{2}+2}$¢Ù¡£¨8·Ö£©
ÓÉ$\left\{\begin{array}{l}{x=ty+4}\\{{y}^{2}=4x}\end{array}\right.$ ÏûÈ¥x£¬µÃy2-4ty-16=0£¬¡£¨9·Ö£©
Ôò$\left\{\begin{array}{l}{{y}_{3}+{y}_{4}=4t}\\{{y}_{3}{t}_{4}=-16}\end{array}\right.$£¬°Ñy3=¦Ëy4´úÈ룬ÕûÀíµÃ£º$\frac{£¨1+¦Ë£©^{2}}{¦Ë}$=-t2¢Ú¡£¨10·Ö£©
ÓÉ¢Ù¢ÚÏûÈ¥¦Ë£¬µÃ$\frac{4{t}^{2}}{{t}^{2}+2}$=t2£¬½âµÃt=0»òt=$¡À\sqrt{2}$ ¡£¨11·Ö£©
¹ÊÖ±ÏßlµÄ·½³ÌΪ£ºx=-1»òx-$\sqrt{2}$y+1=0 »òx+$\sqrt{2}$y+1=0 ¡£¨12·Ö£©
¹Ê´ð°¸Îª£ºÖ±ÏßlµÄ·½³ÌΪ£ºx=-1»òx-$\sqrt{2}$y+1=0 »òx+$\sqrt{2}$y+1=0
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ»ù±¾ÐÔÖÊ¡¢Ö±Ïß·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄ½»µã¡¢Ö±ÏßÓëÅ×ÎïÏß½»µã¡¢Æ½ÐÐÖ±ÏßµÄÐÔÖÊ£¬¶ÔѧÉúµÄ×ÛºÏÄÜÁ¦ÓкܸߵÄÒªÇó£®
A£® | f£¨x£©Óм«´óÖµÎÞ¼«Ð¡Öµ | B£® | f£¨x£©Óм«Ð¡ÖµÎÞ¼«´óÖµ | ||
C£® | f£¨x£©¼ÈÓм«´óÖµÓÖÓм«Ð¡Öµ | D£® | f£¨x£©Ã»Óм«Öµ |
A£® | 15 | B£® | 200 | C£® | 240 | D£® | 2160 |
A£® | £¨0£¬+¡Þ£© | B£® | £¨-¡Þ£¬0£©¡È£¨3£¬+¡Þ£© | C£® | £¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£© | D£® | £¨-¡Þ£¬0£© |
A£® | 45 | B£® | 40 | C£® | 30 | D£® | 15 |
A£® | [-1£¬1]¡È[2£¬+¡Þ£© | B£® | £¨-¡Þ£¬-1]¡È[1£¬2] | C£® | £¨-¡Þ£¬-1]¡È[2£¬+¡Þ£© | D£® | [-1£¬2] |