题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线的普通方程及曲线的直角坐标方程;
(2)已知点,点,直线过点且与曲线相交于,两点,设线段的中点为,求的值.
【答案】(1),(2)8
【解析】试题分析:
(1)消去参数可得的普通方程为,极坐标方程化为直角坐标方程可得曲线的直角坐标方程为;
(2)易得点在上,所以,,所以的参数方程为,
联立直线的参数方程与抛物线方程可得.结合参数的几何意义可知.
试题解析:
(1)由直线的参数方程消去,得的普通方程为,
由得,
所以曲线的直角坐标方程为;
(2)易得点在上,所以,所以,
所以的参数方程为,
代入中,得.
设,,所对应的参数分别为,,.
则,所以.
【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:
最低气温(℃) | |||||
天数 | 11 | 25 | 36 | 16 | 2 |
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
求11月份这种电暖气每日需求量(单位:台)的分布列;
若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?
【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(Ⅰ)试估计班学生人数;
(Ⅱ)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.