题目内容
(12分)如图,在四棱锥
中,
底面
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701300731.png)
,
,
是
的中点.
(Ⅰ)求
和平面
所成的角的大小;
(Ⅱ)证明
平面
;
(Ⅲ)求二面角
的正弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937014723294.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701253605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701269395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701284534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701300731.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701316672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701331632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701347322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701362391.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701378375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701394445.png)
(Ⅱ)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701409429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701440462.png)
(Ⅲ)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701456569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937014723294.png)
(Ⅰ)解:在四棱锥
中,因
底面
,
平面
,故
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937016593597.png)
又
,
,从而
平面
.故
在平面
内的射影为
,从而
为
和平面
所成的角.
在
中,
,故
.
所以
和平面
所成的角的大小为
.
(Ⅱ)证明:在四棱锥
中,
因
底面
,
平面
,故
.
由条件
,
,
面
.又
面
,
.
由
,
,可得
.
是
的中点,
,
.综上得
平面
.
(Ⅲ)解:过点
作
,垂足为
,连结
.由(Ⅱ)知,
平面
,
在平面
内的射影是
,则
.
因此
是二面角
的平面角.由已知,得
.设
,得
,
,
,
.
在
中,
,
,则
.在
中,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701253605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701269395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701284534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701612434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701284534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701643500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937016593597.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701690511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701706611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701721411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701394445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701378375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701394445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701784379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701799491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701378375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701394445.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701846573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701877501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701908653.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701378375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701394445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701971369.png)
(Ⅱ)证明:在四棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701253605.png)
因
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701269395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701284534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702033447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701284534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702080555.png)
由条件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702096549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702111623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702127445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702142460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702158440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702142460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702189627.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702205633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702236662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702267521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702283366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701362391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702314614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702330638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701409429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701440462.png)
(Ⅲ)解:过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701347322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702392647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702408405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702423486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701409429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701440462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702423486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701440462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702501496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702517631.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702548604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193701456569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702579669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702610491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702626468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702642795.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702657761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702673737.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702688569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702704664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702720836.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937027351890.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193702751689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231937027661119.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目