题目内容

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

(1)
(2)当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元

解析试题分析:(1)根据年利润=销售额-投入的总成本-固定成本,分0<x<80和当x≥80两种情况得到L与x的分段函数关系式;(2)当0<x<80时根据二次函数求最大值的方法来求L的最大值,当x≥80时,利用基本不等式来求L的最大值,最后综合即可.
试题解析:(1)因为每件商品售价为0.05万元,则千件商品销售额为0.05×1000万元,依题意得:
时,
.  2分
时,
=.  4分
所以   6分
(2)当时,
此时,当时,取得最大值万元.    8分
时,
时,即取得最大值1000万元.   11分

所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元.  12分
考点:1.分段函数的值域的求法;2.二次函数的最值求法;3.函数模型的应用

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网