题目内容
【题目】在△ABC中,已知 .
(1)求证:tanB=3tanA;
(2)若cosC= ,求A的值.
【答案】
(1)解:∵ ,
∴cbcosA=3cacosB,即bcosA=3acosB,
由正弦定理 = 得:sinBcosA=3sinAcosB,
又0<A+B<π,∴cosA>0,cosB>0,
在等式两边同时除以cosAcosB,可得tanB=3tanA
(2)解:∵cosC= ,0<C<π,
sinC= = ,
∴tanC=2,
则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,
∴ =﹣2,
将tanB=3tanA代入得: =﹣2,
整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,
解得:tanA=1或tanA=﹣ ,
又cosA>0,∴tanA=1,
又A为三角形的内角,
则A= .
【解析】(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.
练习册系列答案
相关题目