题目内容
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程 ;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式: , )
参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
【答案】(1) (2)线性回归方程是理想的.
【解析】试题分析:(1)根据给出的公式计算回归方程.(2)根据(1)中的回归方程计算预测值,看它与实际值的差是否不超过2即可.
解析:(1)由数据求得 ,由公式求得,再由,所以关于的线性回归方程为.
(2)当时, , ;同样,当时, , ,所以,该小组所得线性回归方程是理想的.
练习册系列答案
相关题目