题目内容
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t为参数),圆C的极坐标方程为
(1)求直线l和圆C的直角坐标方程;
(2)若点在圆C上,求的取值范围.
【答案】(1)直线l的直角坐标方程为;圆C的直角坐标方程为;
(2);
【解析】
(1)由直线l的参数方程,消去参数t,即可得到直线l的直角坐标方程,再由极坐标与直角坐标的互化公式,即可求得圆C的直角坐标方程;
(2)设,化简得,结合三角函数的性质,即可求解.
(1)由题意,直线l的参数方程为(t为参数),
消去参数t,得直线l的直角坐标方程为,
又由圆C的极坐标方程为,即,
又因为,,,
可得圆C的直角坐标方程为.
(2)因为点在圆C上,可设,
所以,
因为,所以的取值范围是.
练习册系列答案
相关题目
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | |
男生 | 5 | |
女生 | 10 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;
(3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.
参考公式:.
独立性检验临界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |