题目内容

【题目】已知数列,则“存在常数,对任意的,且,都有”是“数列 为等差数列”的( )

A. 充分而不必要条件 B. 必要而不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

【答案】C

【解析】

由等差数列的定义不妨令mn+1,则有:an+1anc,可知,数列{an}是以c为公差的等差数列,由等差数列的通项公式ana1+n1dama1+m1d,(d为公差)得:,故得解.

由已知:“存在常数c,对任意的mnN*,且mn,都有

不妨令mn+1,则有:an+1anc,由等差数列的定义,

可知,数列{an}是以c为公差的等差数列,

由“数列{an}为等差数列”则ana1+n1dama1+m1d,(d为公差)

所以:

即存在“存在常数c,对任意的mnN*,且mn,都有”此时,cd

综合①②得:“存在常数c,对任意的mnN*,且mn,都有

是“数列{an}为等差数列”的充分必要条件,

故选:C

练习册系列答案
相关题目

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论

型】解答
束】
18

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网