题目内容
【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.
【答案】
(1)
解:记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;
B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1
∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48
∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;
(2)
解:P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3
P(ξ=0)=P(A2A)=0.36×0.4=0.144
P(ξ=2)=P(B)=0.352
P(ξ=3)=P(A0 )=0.16×0.6=0.096
P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408
∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.
【解析】(1)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1 ,根据P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48,即可求得结论;(2)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.