题目内容
【题目】已知函数的图象与直线相切于点.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间.
【答案】(Ⅰ)a=3,b=﹣9(Ⅱ)单调递减区间是(﹣3,1).单调增区间为:(∞,﹣3),(1,+∞)
【解析】
(Ⅰ)求导函数,利用f(x)的图象与直线15x﹣y﹣28=0相切于点(2,2),建立方程组,即可求a,b的值;
(Ⅱ)求导函数,利用导数小于0,即可求函数f(x)的单调递减区间.
(I)求导函数可得f′(x)=3x2+2ax+b,
∵f(x)的图象与直线15x﹣y﹣28=0相切于点(2,2),
∴f(2)=2,f′(2)=﹣15,
∴,
∴a=3,b=﹣9.
(II)由(I)得f′(x)=3x2+6x﹣9,
令f′(x)<0,可得3x2+6x﹣9<0,
∴﹣3<x<1,
函数f(x)的单调递减区间是(﹣3,1).
令f′(x)>0,可得3x2+6x﹣9>0,
单调增区间为:(∞,﹣3),(1,+∞).
综上:函数f(x)的单调递减区间是(﹣3,1).单调增区间为:(∞,﹣3),(1,+∞).
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.