题目内容

16.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是(  )
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

分析 设g(x)=ex(2x-1),y=ax-a,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax-a的下方,求导数可得函数的极值,数形结合可得-a>g(0)=-1且g(-1)=-3e-1≥-a-a,解关于a的不等式组可得.

解答 解:设g(x)=ex(2x-1),y=ax-a,
由题意知存在唯一的整数x0使得g(x0)在直线y=ax-a的下方,
∵g′(x)=ex(2x-1)+2ex=ex(2x+1),
∴当x<-$\frac{1}{2}$时,g′(x)<0,当x>-$\frac{1}{2}$时,g′(x)>0,
∴当x=-$\frac{1}{2}$时,g(x)取最小值-2${e}^{-\frac{1}{2}}$,
当x=0时,g(0)=-1,当x=1时,g(1)=e>0,
直线y=ax-a恒过定点(1,0)且斜率为a,
故-a>g(0)=-1且g(-1)=-3e-1≥-a-a,解得$\frac{3}{2e}$≤a<1
故选:D

点评 本题考查导数和极值,涉及数形结合和转化的思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网