题目内容
【题目】已知圆与圆
(1)若直线与圆相交于两个不同点,求的最小值;
(2)直线上是否存在点,满足经过点有无数对互相垂直的直线和,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)存在点满足题意
【解析】试题分析:(1)动直线恒过定点,根据圆的几何条件可得取最小值时, ,根据垂径定理解出的最小值;(2)两弦长相等转化为对应圆心距相等,根据点到直线距离公式展开得关于斜率k的恒等式,再根据恒等式成立的条件解出点坐标
试题解析:(1)直线过定点, 取最小值时,
,∴
(2)设,斜率不存在时不符合题意,舍去;斜率存在时,则即, 即,
由题意可知,两弦长相等也就是和相等即可,故,∴,化简得: 对任意恒成立,故,解得
故存在点满足题意.
练习册系列答案
相关题目
【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() | |||
单价(元/只) | 1.2 | 1.5 | 1.8 |
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?