题目内容
【题目】如图所示,正方体的棱长为1,线段上有两个动点,且,则下列结论中正确的是__________.
①平面;
②平面平面;
③三棱锥的体积为定值;
④存在某个位置使得异面直线与成角.
【答案】①②③④
【解析】
由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,知:
在①中,由EF∥BD,且EF平面ABCD,BD平面ABCD,得EF∥平面ABCD,故①正确;
在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,
而BE面BDD1B1,BF面BDD1B1,∴AC⊥平面BEF,
∵AC平面ACF,∴面ACF⊥平面BEF,故②正确;
在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,
三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;
在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,
则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,
故存在某个位置使得异面直线AE与BF成角30°,故④正确.
故答案为:①②③④.
练习册系列答案
相关题目