题目内容
【题目】已知定义在R上函数f(x)是可导的,f(1)=2,且f(x)+f'(x)<1,则不等式f(x)﹣1<e1﹣x的解集是( )(注:e为自然对数的底数)
A.(1,+∞)
B.(﹣∞,0)∪(0,1)
C.(0,1)
D.(﹣∞,1)
【答案】A
【解析】解:根据题意,设F(x)=ex(f(x)﹣1),则F'(x)=ex[f(x)+f'(x)﹣1],
因为ex>0,由已知可得,F'(x)<0,即函数F'(x)是单调减函数,F(1)=e,
故f(x)﹣1<e1﹣x,即F(x)<F(1),
则有x>1;
即不等式f(x)﹣1<e1﹣x的解集是(1,+∞);
故选:A.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2 , 你有多大的把握认为是否喜欢打蓝球与性别有关? 附:
下面的临界值表供参考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |