题目内容
定义在R上的函数同时满足以下条件:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。
(1) f(x)=x3 x+3, (2) m>2e e3
解析试题分析:(1)三个条件,三个未知数,本题就是通过条件列方程组解参数,第一个条件说的是单调性,实质是导数,即,3a+2b+c=0;第二个条件是函数的奇偶性,利用恒成立即可,b=0;第三个条件是导数几何意义,即, c= 1 ;因此;(2)存在型问题,转化为函数最值,首先进行变量分离,即m>xlnx x3+x,然后求函数M(x)=xlnx x3+x在[1,e]上最小值,这又要利用导数研究函数M(x)在[1,e]上的单调性,分析得为M(x)在[1,e]上递减,所以M(x)最小值为M(e)=2e e3于是有m>2e e3
试题解析:解:(1)f′(x)=3ax2+2bx+c,∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0 ①
由f′(x)是偶函数得:b=0 ②
又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c= 1 ③
由①②③得:a=,b=0,c= 1,即. 4分
(2)由已知得:存在实数x∈[1,e],使lnx <x2 1
即存在x∈[1,e],使m>xlnx x3+x 6分
设M(x)=xlnx x3+x,x∈[1,e],则M′(x)=lnx 3x2+2 8分
设H(x)=lnx 3x2+2,则H′(x)= 6x= 10分
∴M(x)在[1,e]上递减,
∵x∈[1,e],∴H′(x)<0,即H(x)在[1,e]上递减
于是,H(x)≤H(1),即H(x)≤ 1<0,即M′(x)<0
∴M(x)≥M(e)=2e e3
于是有m>2e e3为所求. 12分
考点:导数在函数中的应用