题目内容

在△ABC中,角A、B、C的对边分别为a、b、c,设S为△ABC的面积,满足4S=
3
(a2+b2-c2)

(Ⅰ)求角C的大小;
(Ⅱ)若1+
tanA
tanB
=
2c
b
,且
AB
BC
=-8
,求c的值.
(Ⅰ)∵根据余弦定理得a2+b2-c2=2abcosC,△ABC的面积S=
1
2
absinC

∴由4S=
3
(a2+b2-c2)
1
2
absinC=2
3
abcosC

化简得sinC=
3
cosC,可得tanC=
sinC
cosC
=
3

∵0<C<π,∴C=
π
3

(Ⅱ)∵1+
tanA
tanB
=
2c
b
,∴1+
sinAcosB
sinBcosA
=
cosAsinB+sinAcosB
cosAsinB
=
2c
b

可得
sin(A+B)
cosAsinB
=
2c
b
,即
sinC
cosAsinB
=
2c
b

∴由正弦定理得
sinC
cosAsinB
=
2sinC
sinB
,解得cosA=
1
2
,结合0<A<π,得A=
π
3

∵△ABC中,C=
π
3
,∴B=π-(A+B)=
π
3

因此,
AB
BC
=-
BA
BC
=-|
BA
|•|
BC
|cosB=-
1
2
c2
AB
BC
=-8

∴-
1
2
c2=-8,解之得c=4(舍负).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网