题目内容

【题目】(本小题14分)已知四棱锥P-ABCD,底面ABCD、边长为的菱形,又,且PD=CD,点MN分别是棱ADPC的中点.

1)证明:DN//平面PMB

2)证明:平面PMB平面PAD

3)求点A到平面PMB的距离.

【答案】(1)见解析;(2)见解析; (3).

【解析】

试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为证面面垂直,找线面垂直,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键.

试题解析:(1)证明:取PB中点Q,连结MQNQ

因为MN分别是棱ADPC中点,所以

QN//BC//MD,且QN=MD,于是DN//MQ.

4

2

又因为底面ABCD、边长为的菱形,且MAD中点,

所以.所以.

8

3)因为MAD中点,所以点AD到平面PMB等距离.

过点DH,由(2)平面PMB平面PAD,所以.

DH是点D到平面PMB的距离.

所以点A到平面PMB的距离为. 12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网