题目内容
【题目】(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
【答案】(1)见解析;(2)见解析; (3).
【解析】
试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键.
试题解析:(1)证明:取PB中点Q,连结MQ、NQ,
因为M、N分别是棱AD、PC中点,所以
QN//BC//MD,且QN=MD,于是DN//MQ.
4分
(2)
又因为底面ABCD是、边长为的菱形,且M为AD中点,
所以.又所以.
8分
(3)因为M是AD中点,所以点A与D到平面PMB等距离.
过点D作于H,由(2)平面PMB平面PAD,所以.
故DH是点D到平面PMB的距离.
所以点A到平面PMB的距离为. 12分
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
(I)请完成列联表
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
参考公式和临界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |