题目内容

【题目】已知α∈[ ],β∈[﹣ ,0],且(α﹣ 3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin( +β)的值为(
A.0
B.
C.
D.1

【答案】B
【解析】解:∵(α﹣ 3﹣sinα﹣2=0,

可得:(α﹣ 3﹣cos( )﹣2=0,即( ﹣α)3+cos( )+2=0

由8β3+2cos2β+1=0,

得(2β)3+cos2β+2=0,

∴可得f(x)=x3+cosx+2=0,

,x2=2β.

∵α∈[ ],β∈[﹣ ,0],

∈[﹣π,0],2β∈[﹣π,0]

可知函数f(x)在x∈[﹣π,0]是单调增函数,方程x3+cosx+2=0只有一个解,

可得 ,即

那么sin( +β)=sin =

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网