题目内容

【题目】将编号为1,2,…,18的18名乒乓球运动员分配在9张球台上进行单打比赛,规定每一张球台上两选手编号之和均为大于4的平方数.记{7号与18号比赛}为事件p.则p为(  ).

A. 不可能事件 B. 概率为的随机事件

C. 概率为的随机事件 D. 必然事件

【答案】D

【解析】

由于编号最大的两数之和为,所以,同一张球台上两选手编号之和只能取3个平方数:25、16、9.现设同一张球台上两选手编号和为25、16、9的分别有xyzxyz均为非负整数)个.依题意有,即.得

又由,知x只能取非负整数0,1,2,3,4,5.逐一代入检验,可得方程唯一的非负整数解

下面讨论9张球台上的选手对阵情况.

(1)由x=3,知平方数为25只能有3个,而编号不小于16的3个选手18,17,16对应的平方数又只能为25,故“两选手编号和为25”的只能是:18与7对阵,17与8对阵,16与9对阵.

(2)由,知去掉18,17,16,9,8,7后剩下的12个选手对应的平方数能且只能为16,有:1与15对阵,2与14对阵,3与13对阵,4与12对阵,5与11对阵,6与10对阵.

所以,规定能够实现,且实现方案是唯一的.9张球台上选手对阵情况为:

事件p为必然事件.选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网