题目内容
19.设数列{an}前n项的和为${S_n},且{a_1}=1,\frac{S_n}{n}={a_n}-n+1$.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{3^{a_n}}$,求数列{bn}前n项的和Tn.
分析 (I)$\frac{{S}_{n}}{n}$=an-n+1,Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2),化为an-an-1=2,利用等差数列的通项公式即可得出.
(II)${b_n}={a_n}•{3^{a_n}}$=(2n-1)•32n-1=$\frac{1}{3}(2n-1)•{9}^{n}$,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(I)∵$\frac{{S}_{n}}{n}$=an-n+1,∴Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2),
两式相减可得:an=nan-(n-1)an-1-2(n-1),化为an-an-1=2,
∴数列{an}是等差数列,首项为1,公差为2.
∴an=1+2(n-1)=2n-1.
(II)${b_n}={a_n}•{3^{a_n}}$=(2n-1)•32n-1=$\frac{1}{3}(2n-1)•{9}^{n}$,
∴数列{bn}前n项的和Tn=$\frac{1}{3}[9+3×{9}^{2}$+5×93+…+(2n-1)•9n],
9Tn=$\frac{1}{3}[{9}^{2}+3×{9}^{3}$+…+(2n-3)•9n+(2n-1)•9n+1],
∴-8Tn=$\frac{1}{3}[9+2({9}^{2}+{9}^{3}+…+{9}^{n})-(2n-1)•{9}^{n+1}]$=$\frac{1}{3}[2×\frac{9×({9}^{n}-1)}{9-1}-9-(2n-1)•{9}^{n+1}]$=$\frac{5-8n}{12}×{9}^{n+1}-\frac{15}{4}$,
∴Tn=$\frac{8n-5}{96}×{9}^{n+1}$+$\frac{15}{32}$.
点评 本题考查了“错位相减法”与等比数列的前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.
A. | $\frac{4030}{4031}$ | B. | $\frac{2014}{4029}$ | C. | $\frac{2015}{4031}$ | D. | $\frac{4030}{4031}$ |
A. | 0 | B. | 1 | C. | -1 | D. | 2 |