题目内容
【题目】已知中心在坐标原点O的椭圆C经过点A(),且点F(,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线与椭圆C交于B,D两点,满足,且原点到直线l的距离为?若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1);(2)不存在符合条件的直线.
【解析】
(1)求出左焦点的坐标,求出到左焦点距离,再求出到右焦点的距离,最后利用椭圆的定义求出椭圆方程;
(2)假设存在这样的直线,设出直线的方程, 原点到直线l的距离为,可得到等式,该直线方程与椭圆方程联立,根据根的判别式,可以计算出直线l的斜率的取值范围,把向量式子
用数量积的坐标表示公式化简,结合根与系数关系可求出该直线的斜率,检验该值在不在斜率的取值范围中,最后再考虑直线不存在斜率的情况,这样就可以得出正确结论.
(1)设椭圆C的方程为,则左焦点为,
在直角三角形中,可求,∴,
故椭圆C的方程为.
(2)假设存在符合题意的直线l,其方程为,由原点到l的距离为得:
.
联立方程,得.
则,,.
设,,
则,
解得.
当斜率不存在时l的方程为,易求得.
综上,不存在符合条件的直线.
练习册系列答案
相关题目
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立关于的回归直线方程:
(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:,,,.