题目内容

【题目】如图,在正四棱台中,上底面边长为4,下底面边长为8,高为5,点分别在上,且.过点的平面与此四棱台的下底面会相交,则平面与四棱台的面的交线所围成图形的面积的最大值为

A. B. C. D.

【答案】B

【解析】

由题意可知,当平面α经过BCNM时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积。

当斜面α经过点时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8

此时作正四棱台俯视图如下:

MN中点在底面的投影到BC的距离为8-2-1=5

因为正四棱台的高为5,所以截面等腰梯形的高为

所以截面面积的最大值为

所以选B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网