题目内容
18.用辗转相除法求294和84的最大公约数,则所求最大公约数为 ( )A. | 21 | B. | 42 | C. | 84 | D. | 168 |
分析 用大数除以小数,得到商和余数,再用上面的除数除以余数,又得到商和余数,继续做下去,知道刚好能够整除为止,得到两个数的最大公约数,从而得到294和84的最大公约数.
解答 解:∵294÷84=3…42,
84÷42=2,
∴用辗转相除法求294和84的最大公约数为42,
故选:B
点评 本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.
练习册系列答案
相关题目
8.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{an},已知a2=2a1,且样本容量为300,则对应小长方形面积最小的一组的频数为( )
A. | 20 | B. | 40 | C. | 30 | D. | 无法确定 |
9.一个几何体的三视图如图所示,其中左视图为直角三角形,则该几何体的体积为( )
A. | 16$\sqrt{2}$ | B. | $\frac{{4\sqrt{2}}}{3}$ | C. | $\frac{{8\sqrt{2}}}{3}$ | D. | $\frac{{16\sqrt{2}}}{3}$ |
10.将1~9这9个数平均分成3组,则每组的3个数都成等差数列的分组方法的种数是( )
A. | 3 | B. | 5 | C. | 7 | D. | 9 |
7.已知C,D是圆A:(x+1)2+y2=1与圆B:x2+(y-2)2=4的公共点,则△BCD的面积为( )
A. | $\frac{4}{5}$ | B. | $\frac{8}{5}$ | C. | $\frac{{4\sqrt{5}}}{5}$ | D. | $\frac{{8\sqrt{5}}}{5}$ |