题目内容
【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点,且异面直线和所成的角的大小为.
(1)求证:平面平面;
(2)求三棱锥的体积.
【答案】(1)证明过程详见解析(2)
【解析】
(1)由,为的中点,证得,再由线面垂直的性质,得到,利用线面垂直的判定定理,得到平面,进而证得平面平面;
(2)取的中点,连结,得到底面,且异面直线和所成的角的大小为,即,进而利用棱锥的体积公式,即可求解。
(1)证明:∵,为的中点,
∴
又平面,平面,
∴
∵
∴平面,
∵平面
∴平面平面
(2)解::取的中点,连结
∵三角形为正三角形,底面
∴,又∵分别为的中点
∴,,
又∵异面直线和所成的角的大小为
∴
∴三角形为正三角形,
∴
又∵,∴
∴
又∵
∴三棱锥的体积.
【题目】为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取名,抽到岁~岁女居民的概率是.现用分层抽样的方法在全小区抽取名居民,则应在岁以上抽取的女居民人数为( )
岁—岁 | 岁—岁 | 岁以上 | |
女生 | |||
男生 |
A.B.C.D.
【题目】2018年8月教育部、国家卫生健康委员会等八个部门联合印发《综合防控儿童青少年近视实话方案》中明确要求,为切实加强新时代儿童青少年近视防控工作,学校应严格组织全体学生每天上、下午各大做1次眼保健操.为了了解学校推广眼保健操是否能有效预防近视,随机从甲学校抽取了50名学生,再从乙学校选出与甲学校被抽取的50名学生视力情况一样的50学生(期中甲学校每天安排学生做眼保健操,乙学校不安排做跟保健操),一段时间后检测他们的视力情况并统计,若视力情况为1.0及以上,则认为该学生视力良好,否则认为该学生的视力一般,表1为甲学校视力情况的频率分布表,表2为乙学校学生视力情况的频率分布表,根据表格回答下列问题:
表1 甲学校学生视力情况的频率分布表
视力情况 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 |
频 数 | 1 | 1 | 15 | 15 | 18 |
表2 乙学校学生视力情况的频率分布表
视力情况 | 0.5 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 |
频 数 | 2 | 2 | 4 | 19 | 13 | 10 |
(1)求在甲学校的50名学生中随机选择1名同学,求其视力情况为良好的概率;
(2)根据表1,表2,对在学校推广眼保健操的必要性进行分析;
(3)在乙学校视力情况一般的学生中选择2人,了解其具体用眼习惯,求这两人视力情况都为0.8的概率.