题目内容

【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

【答案】
(1)如图示:

证明:设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,

又已知SC⊥BD,SC⊥CO=C,所以BD⊥平面SOC,

∵△ABD是正三角形,∴AO是BD的中垂线,

故A、O、C在同一直线上,

故平面SAC即平面SOC,

由BD⊥OC,BD⊥SC,得BD⊥平面SAC,

故SA⊥BD


(2)证明:取AB中点N,连接DM,MN,DN,

∵M是SA的中点,∴MN∥BE,

∵△ABD是正三解形,∴DN⊥AB,

∵∠BCD=120°得∠CBD=30°,∴∠ABC=90°,即BC⊥AB,

所以ND∥BC,所以平面MND∥平面BSC,

故DM∥平面SBC.


【解析】(1)根据线面垂直以及线段的垂直平分线的性质证明即可;(2)由线线平行到面面平行从而推出线面平行即可.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网