题目内容
11.已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2$\sqrt{7}$,它的外接球的球心为O,点E是AB的中点,点P是球O上任意一点,有以下判断:①PE的长的最大值是为9;
②三棱锥P-EBC的体积的最大值是$\frac{32}{3}$;
③三棱锥P-AEC1的体积的最大值是20;
④过点E的平面截球O所得截面面积最大时,B1C垂直于该截面,
其中正确的命题是①③( 把你认为正确的都写上 ).
分析 球心O在体对角线的中点,求出球的半径,然后求OE的长+半径,即可判断①;
O到平面EBC的距离+半径就是P到平面EBC的距离最大值,再由体积公式计算即可判断②;
由三棱锥P-AEC1体积的表达式,高即为球的半径,可求最大值,即可判断③;
过点E的平面截球O所得截面面积最大时,即为过球心的大圆面,可为截面ABC1D1,显然B1C与BC1不垂直,即可判断④.
解答 解:对于①,由题意可知球心O在体对角线的中点,
直径为:$\sqrt{{6}^{2}+{6}^{2}+(2\sqrt{7})^{2}}$=10,
即球半径是5,则PE长的最大值是OP+OE=5+$\sqrt{{3}^{2}+{\sqrt{7}}^{2}}$=9,
故①正确;
对于②,P到平面EBC的距离最大值是5+$\frac{1}{2}$×2$\sqrt{7}$=5+$\sqrt{7}$,
三棱锥P-EBC的体积的最大值是$\frac{1}{3}$×$\frac{1}{2}$×3×6×(5+$\sqrt{7}$)=3(5+$\sqrt{7}$),故②错误;
对于③,三棱锥P-AEC1体积的最大值是V=$\frac{1}{3}$S△AEC1•h=$\frac{1}{3}$×$\frac{1}{2}$×3×8×5=20,
(h最大是半径)故③正确;
对于④,过点E的平面截球O所得截面面积最大时,即为过球心的大圆面,可为截面ABC1D1,
显然B1C与BC1不垂直,故④错误.
故正确的命题是①③,
故答案为:①③
点评 本题考查棱柱的结构特征,同时考查球的截面的性质和点到面的距离的最大问题,考查体积的运算能力和空间想象能力,属于中档题.
练习册系列答案
相关题目
7.设复数z1=1-i,z2=$\sqrt{3}$+i,其中i为虚数单位,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虚部为( )
A. | $\frac{1+\sqrt{3}}{4}i$ | B. | $\frac{1+\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}-1}{4}i$ | D. | $\frac{\sqrt{3}-1}{4}$ |
6.设函数f(x)=(a-x)ex-1(e为自然对数的底数).
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.
3.对某中学高二某班40名学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二堆条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
(Ⅱ)从该班所有女生中随机选取2人交流学习体会,求这2人中喜欢数学课程的人数X的分布列和数学期望.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
喜欢数学课程 | 不喜欢数学课程 | 总计 | |
男 | |||
女 | |||
总计 | 40 |
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.01 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 6.635 |