题目内容
13.在△ABC中,角A,B,C对边分别为a,b,c,已知A=$\frac{π}{3}$,cosB=$\frac{\sqrt{6}}{3}$,且c=b+$\sqrt{6}$-1(1)求sinC的值.
(2)求边b的长.
分析 (1)利用两角和差的正弦公式即可求sinC的值.
(2)根据正弦定理求出b,c的关系结合方程即可求边b的长.
解答 解:(1)∵cosB=$\frac{\sqrt{6}}{3}$,∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{3}}{3}$,
则sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{2}×\frac{\sqrt{6}}{3}+\frac{1}{2}×\frac{\sqrt{3}}{3}=\frac{3\sqrt{2}+\sqrt{3}}{6}$.
(2)∵$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
∴$\frac{c}{b}=\frac{sinC}{sinB}=\frac{\frac{3\sqrt{2}+\sqrt{3}}{6}}{\frac{\sqrt{3}}{3}}$=$\frac{3\sqrt{2}+\sqrt{3}}{2\sqrt{3}}=\frac{1+\sqrt{6}}{2}$,
即c=$\frac{1+\sqrt{6}}{2}$b,
∵c=b+$\sqrt{6}$+1
∴$\frac{1+\sqrt{6}}{2}$b=b+$\sqrt{6}$-1,
即$\frac{\sqrt{6}-1}{2}$b=$\sqrt{6}$-1,
即b=2.
点评 本题主要考查正弦定理以及两角和差的正弦公式的应用,考查学生的计算能力.
练习册系列答案
相关题目
8.已知a>0,b>0,且a+b>2,则$\frac{1+b}{a}$与$\frac{1+a}{b}$两数应满足( )
A. | 都大于2 | B. | 都小于2 | C. | 至少有一个小于2 | D. | 至少有一个大于2 |
5.已知关于等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系式为y=10-2x,面积S关于腰长x的函数关系式为S=$\frac{1}{2}$y$\sqrt{{x}^{2}-(\frac{y}{2})^{2}}$,则S的定义域是( )
A. | R | B. | (0,10) | C. | (0,5) | D. | ($\frac{5}{2}$,5) |