题目内容
【题目】已知函数 ,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是 .
【答案】(0,1)
【解析】解:令g(x)=f(x)﹣m=0, 得m=f(x)
作出y=f(x)与y=m的图象,
要使函数g(x)=f(x)﹣m有3个零点,
则y=f(x)与y=m的图象有3个不同的交点,
所以0<m<1,
所以答案是:(0,1).
【考点精析】掌握函数的零点与方程根的关系是解答本题的根本,需要知道二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
练习册系列答案
相关题目