题目内容
【题目】已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上为单调递增函数,求的取值范围;
(3)当时,函数的图象与轴交于两点且,又是的导函数.若正常数满足条件.证明:<0.
【答案】(1)(2)(3),理由见解析
【解析】试题分析:(1),可知在[,1]是增函数,在[1,2]是减函数,所以最大值为f(1).(2)在区间上为单调递增函数,即在上恒成立。,利用分离参数在上恒成立,即求的最大值。
(3)有两个实根, ,两式相减,又,
.要证:,只需证:,令可证。
试题解析:(1)
函数在[,1]是增函数,在[1,2]是减函数,
所以.
(2)因为,所以,
因为在区间单调递增函数,所以在(0,3)恒成立
,有=,()
综上:
(3)∵,又有两个实根,
∴,两式相减,得,
∴,
于是
.
要证:,只需证:
只需证:.(*)
令,∴(*)化为 ,只证即可.
在(0,1)上单调递增,,
即.∴.
(其他解法根据情况酌情给分)
练习册系列答案
相关题目
【题目】2016年夏季奥运会将在巴西里约热内卢举行,体育频道为了解某地区关于
奥运会直播的收视情况,随机抽取了名观众进行调查,其中岁以上的观众有名,下面是根据
调查结果绘制的观众准备平均每天收看奥运会直播时间的频率分布表(时间:分钟):
分组 | ||||||
频率 |
将每天准备收看奥运会直播的时间不低于分钟的观众称为“奥运迷”,已知“奥运迷”中有名岁
以上的观众.
(1)根据已知条件完成下面的列联表,并据此资料你是否有以上的把握认为“奥运迷”与年龄
有关?
非“奥运迷” | “奥运迷” | 合计 | |
岁以下 | |||
岁以上 | |||
合计 |
(2)将每天准备收看奥运会直播不低于分钟的观众称为“超级奥运迷”,已知“超级奥运迷”中有
名岁以上的观众,若从“超级奥运迷”中任意选取人,求至少有名岁以上的观众的概率.
附: