题目内容

【题目】以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:
(1)计算该炮兵连这8周中总的命中频率p0 , 并确定第几周的命中频率最高;
(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;
(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=﹣0.398)

【答案】
(1)解:这8周总总命中炮数为:40+45+46+49+47+49+53+52=381,

总未命中炮数为32+34+30+32+35+33+30+28=254,

∴该炮兵连这8周中总的命中频率p0=

∴根据表中数据知第8周的命中率最高


(2)解:由题意知X~B(3,0.6),

则X的数学期望为E(X)=3×0.6=1.8


(3)解:由1﹣(1﹣P0n>0.99,解得0.4n<0.01,

∴n>log0.40.01= =﹣ = ≈5.025,

∴至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.


【解析】(1)先求出这8周总总命中炮数和总未命中炮数,由此能求出该炮兵连这8周中总的命中频率,从而根据表中数据能求出第8周的命中率最高.(2)由题意知X~B(3,0.6),由此能求出X的数学期望.(3)由1﹣(1﹣P0n>0.99,得0.4n<0.01,由此能求出至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网