ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢C³É¹«²î´óÓÚ0µÄµÈ²îÊýÁУ¬ÇÒÂú×ãÌõ¼þ£º1-cos2A-cos2C+cos2Acos2C=$\frac{4+2\sqrt{3}}{4}$£¬Ôò$\frac{a+\sqrt{2}b}{c}$µÄֵΪ£¨¡¡¡¡£©A£® | $\frac{\sqrt{6}+1}{2}$ | B£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C£® | $\frac{2+\sqrt{3}}{4}$ | D£® | 2 |
·ÖÎö ÓÉÌâÒâ¿ÉµÃ½âµÃ£ºA£¼B£¼C£¬B=$\frac{¦Ð}{3}$£¬»¯¼òÌõ¼þ¿ÉµÃsinAsinC=$\frac{\sqrt{3}+1}{4}$£®ÔÙÓÉ»ý»¯ºÍ²î¹«Ê½¿ÉµÃcos£¨-A+C£©=$\frac{\sqrt{3}}{2}$£¬¹ÊC-A=30¡ã£¬Óɴ˿ɵà AºÍCµÄÖµ£¬Çó³ösinAºÍsinB µÄÖµ£¬ÔÙÀûÓÃÁ½½ÇºÍµÄÕýÏÒ¹«Ê½ÇóµÃsinCµÄÖµ£¬ÀûÓÃÕýÏÒ¶¨Àí¼´¿ÉÇóÖµ£®
½â´ð ½â£º¡ßÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢C³É¹«²î´óÓÚ0µÄµÈ²îÊýÁУ¬2B=A+C£¬A+B+C=¦Ð£¬
¡à½âµÃ£ºA£¼B£¼C£¬B=$\frac{¦Ð}{3}$£¬
¡ß1-cos2A-cos2C+cos2Acos2C=$\frac{4+2\sqrt{3}}{4}$£¬
¡à¿ÉµÃ£º£¨1-cos2A£©£¨1-cos2C£©=$\frac{4+2\sqrt{3}}{4}$£¬
ÓÐ2sin2A•2sin2C=$\frac{4+2\sqrt{3}}{4}$£¬µÃsin2A•sin2C=£¨$\frac{\sqrt{3}+1}{4}$£©2£¬
¿ÉµÃ£ºsinAsinC=$\frac{\sqrt{3}+1}{4}$
¡à½âµÃ£º-$\frac{1}{2}$[cos£¨A+C£©-cos£¨A-C£©]=$\frac{\sqrt{3}+1}{4}$£¬
½âµÃ£ºcos£¨A-C£©=$\frac{\sqrt{3}}{2}$£¬
¡àC-A=$\frac{¦Ð}{6}$£¬½âµÃ£ºA=$\frac{¦Ð}{4}$£¬C=$\frac{5¦Ð}{12}$
¡àsinA=$\frac{\sqrt{2}}{2}$£¬sinB=$\frac{\sqrt{3}}{2}$£¬sinC=sin£¨$\frac{¦Ð}{4}+\frac{¦Ð}{6}$£©=$\frac{\sqrt{6}+\sqrt{2}}{4}$
¡à$\frac{a+\sqrt{2}b}{c}$=$\frac{sinA+\sqrt{2}sinB}{sinC}$=$\frac{\frac{\sqrt{2}}{2}+\sqrt{2}¡Á\frac{\sqrt{3}}{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}}$=2£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýµÄºãµÈ±ä»»¼°»¯¼òÇóÖµ£¬µÈ²îÊýÁеĶ¨ÒåºÍÐÔÖÊ£¬ÕýÏÒ¶¨ÀíµÄÓ¦Óã¬ÊôÓÚÖеµÌâ
A£® | y=sinx | B£® | y=cosx | C£® | y=sin2x | D£® | y=cos2x |
A£® | x=$\frac{¦Ð}{2}$+1 | B£® | x=$\frac{¦Ð}{2}$ | C£® | x=¦Ð+1 | D£® | x=¦Ð |
A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{1}{2}$ |