题目内容
【题目】设函数f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)≤a﹣|x|在区间[﹣1,2]上恒成立,求实数a的取值范围
【答案】(1)[0,2];(2)
【解析】
(1)分段去绝对值再求解不等式即可.
(2)由题意可得可得|2x﹣3|+|x+2|+|x|≤a恒成立. g(x)=|2x﹣3|+|x+2|+|x|,再分段去绝对值讨论g(x)的最大值即可.
(1)f(x)≤5即为|2x﹣3|+|x+2|≤5,
当x≥时,2x﹣3+x+2≤5,解得≤x≤2;
当﹣2<x<时,3﹣2x+x+2≤5,解得0≤x<;
当x≤﹣2时,3﹣2x﹣x﹣2≤5,解得x∈.
可得不等式的解集为[0,2];
(2)关于x的不等式f(x)≤a﹣|x|在区间[﹣1,2]上恒成立,可得|2x﹣3|+|x+2|+|x|≤a,
设g(x)=|2x﹣3|+|x+2|+|x|,即g(x)=x+2+|x|+|2x﹣3|,﹣1≤x≤2,
当≤x≤2时,g(x)=x+2+x+2x﹣3=4x﹣1;
当0<x<时,g(x)=x+2+x+3﹣2x=5;
当﹣1≤x≤0时,g(x)=x+2﹣x+3﹣2x=5﹣2x.可得g(x)的最大值为g(﹣1)=g(2)=7,可得a≥7.
即a的范围是.
【题目】由国家统计局提供的数据可知,2012年至2018年中国居民人均可支配收入(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均可支配收入 | 1.65 | 1.83 | 2.01 | 2.19 | 2.38 | 2.59 | 2.82 |
(1)求关于的线性回归方程(系数精确到0.01);
(2)利用(1)中的回归方程,分析2012年至2018年中国居民人均可支配收入的变化情况,并预测2019年中国居民人均可支配收入.
附注:参考数据:,.
参考公式:回归直线方程的斜率和截距的最小二乘估计公式分别为: ,.
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.
(1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?
(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.
甲地区 | 乙地区 | 合计 | |
优质树苗 | 5 | ||
非优质树苗 | 25 | ||
合计 |
附:K2=,其中n=a+b+c+d
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为的样本,测量树苗高度(单位:).经统计,高度均在区间内,将其按,,,,,分成组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.
(1)求频率分布直方图中的值;
(2)已知所抽取的这棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | ||
优质树苗 | |||
非优质树苗 | |||
合计 |
附:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |