搜索
题目内容
方程
有两个不相等的实数根,则
的取值范围是 ▲ .
试题答案
相关练习册答案
略
练习册系列答案
小学奥数举一反三系列答案
新课标初中单元测试卷系列答案
口算应用一卡通系列答案
首席期末8套卷系列答案
新课标单元检测卷系列答案
同步训练全优达标测试卷系列答案
高考总复习三维设计系列答案
新课标小学毕业总复习系列答案
中考必备中考试卷精选系列答案
出彩阅读系列答案
相关题目
(本小题满分12分)
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
经过调查发现,某种新产品在投放市场的100天中,前40天,其价格直线上升,(价格是关于时间的一次函数),而后60天,其价格则呈直线下降趋势,现抽取其中4天的价格如下表所示:
时间
第4天
第32天
第60天
第90天
价格(千元)
23
30
22
7
(Ⅰ)写出价格
(
)关于时间
的函数表达式(
表示投入市场的第
天);
(Ⅱ)若销售量
(
)与时间
的函数关系是
,求日销售额的最大值,并求第几天销售额最高?
(本小题满分12分)
已知函数f(x)=
(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为
。
(1)求证P的纵坐标为定值; (4分)
(2)若数列{
}的通项公式为
=f(
)(m∈N
,n=1,2,3,…,m),求数列{
}的前m项和
; (5分)
(3)若m∈N
时,不等式
<
横成立,求实数a的取值范围。(3分)
(12分)已知
是二次函数,不等式
的解集是
且
在区间
上的最大值是12.
(1)求
的解析式;
(2)是否存在实数
使得方程
在区间
内有且只有两个不等的
实数根?若存在,求出
的取值范围;若不存在,说明理由.
为求方程
的虚根,可以把原方程变形为
,
由此可得原方程的一个虚根为______
已知方程
有实数根
,则复数
__________________.
方程
的解是
在区间
的解有且只有一个,则实数t的取值范围为
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总