题目内容

6.在△ABC中,sin2C=(sinA-sinB)2+sinAsinB,则C的值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 原式可化简为a2+b2-c2=ab,由余弦定理知cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,即可求得C的值.

解答 解:∵已知等式sin2C=(sinA-sinB)2+sinAsinB=sin2A+sin2B-sinAsinB,
∴sin2C+sinAsinB=sin2A+sin2B,利用正弦定理化简得:c2+ab=a2+b2,即a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
又0<C<π,
∴C=$\frac{π}{3}$;
故选:C.

点评 本题主要考察了正弦定理、余弦定理的综合应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网