题目内容

直线:y=k(x-2)+2与圆x2+y2-2x-2y=0有两个不同的公共点,则k的取值范围是
A.(-,-1)B.(-1,1)C.(-1,+D.(-,-1)∪(-1,+
D
分析:先将圆的方程化为标准方程,直线方程,化为一般方程.要使直线l:y=k(x-2)+2与圆x2+y2-2x-2y=0有两个不同的公共点,则圆心到直线的距离小于半径,故可求k的取值范围.
解答:解:将圆化为标准方程:(x-1)2+(y-1)2=2,直线l:y=k(x-2)+2可化为:kx-y-2k+2=0
要使直线l:y=k(x-2)+2与圆x2+y2-2x-2y=0有两个不同的公共点,则圆心到直线的距离小于半径

∴k2+2k+1>0
∴k≠-1
∴k的取值范围是(-∞,-1)∪(-1,+∞)
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网