题目内容
12.观察下列等式:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第n个等式为:13+23+33+…+n3=(1+2+3+…+n)2=$\frac{{n}^{2}•(n+1)^{2}}{4}$.分析 左边是连续自然数的立方和,右边是左边的数的和的立方,由此得到结论
解答 解:∵13=1
13+23=9=(1+2)2,
13+23+33=36=(1+2+3)2,
13+23+33+43=100=(1+2+3+4)2,
…
由以上可以看出左边是连续自然数的立方和,右边是左边的数的和的立方,
照此规律,第n个等式可为:13+23+33+…+n3=(1+2+3+…+n)2=$\frac{{n}^{2}•(n+1)^{2}}{4}$.
故答案为:13+23+33+…+n3=(1+2+3+…+n)2=$\frac{{n}^{2}•(n+1)^{2}}{4}$
点评 本题考查了归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质,(2)从已知某些相同性质中推出一个明确表达的一般性命题
练习册系列答案
相关题目
7.已知二次函数y=x2-2ax+1在区间(2,3)上是单调函数,则实数a的取值范围是( )
A. | a≤-3或a≥-2 | B. | 2≤a≤3 | C. | a≤2或a≥3 | D. | -3≤a≤-2 |
1.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:
(1)根据如图两个直方图完成2×2列联表:
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
(1)根据如图两个直方图完成2×2列联表:
成绩性别 | 优秀 | 不优秀 | 总计 |
男生 | |||
女生 | |||
总计 |
K0 | 2.072 | 2.076 | 3.814 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |