题目内容

【题目】从①前项和,②,③,这三个条件中任选一个,补充到下面的问题中,并完成解答.

在数列中,_______,其中

(Ⅰ)求的通项公式;

(Ⅱ)若成等比数列,其中,且,求的最小值.

【答案】选择①:(Ⅰ);(Ⅱ)5

选择②:(Ⅰ);(Ⅱ)6

选择③:(Ⅰ);(Ⅱ)5

【解析】

)选择①,由求得的值,再由可求得数列的通项公式;

选择②,可知数列是以为公差的等差数列,进而可求得数列的通项公式;

选择③,可知数列是等差数列,求出公差的值,进而可求得数列的通项公式;

)由可得出关于的表达式,进而可求得的最小值.

选择①:()当时,由,得.

时,由题意,得,所以

经检验,符合上式,所以

)由成等比数列,得,即

化简,得

因为是大于的正整数,且,所以当时,有最小值

选择②:()因为,所以

所以数列是公差的等差数列.

所以

)由成等比数列,得,即

化简,得

因为是大于的正整数,且,所以当时,取到最小值

选择③:()由,得,所以数列是等差数列,

设等差数列的公差为,又因为,所以.

所以

因为成等比数列,所以,即

化简,得

因为是大于的正整数,且,所以当时,有最小值

练习册系列答案
相关题目

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式p=f(k).

2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1.

(i)求证:数列为等比数列;

(ii)时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网