题目内容
已知函数
.
(1)求
的单调区间;
(2)当
时,求证:
恒成立..
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819706612.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819722466.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819738392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819753661.png)
(1)单调减区间为
,单调增区间为
,(2)详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819784498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819800588.png)
试题分析:(1)求函数单调区间,有四个步骤.一是求定义域
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819800566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819831660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819847409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819862620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819878608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819894706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819909599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819784498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819800588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819956787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819972266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819987312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820003947.png)
试题解析:解:
(1)定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819800566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819831660.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820050565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819847409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820081490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820096463.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820096463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819784498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042819800588.png)
(2)证明1:
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820315692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820330386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820346827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820362496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820377466.png)
![]() | ![]() | 1 | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820486696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820502552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820330386.png)
所以,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820533398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820549613.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820564566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820580566.png)
所以,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820533398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820611662.png)
证明2:
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428206271055.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820642748.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820658560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820674467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820362496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820377466.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820377466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820986657.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820533398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042821017456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042821032527.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042821032565.png)
即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820533398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042820611662.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |
![]() | ![]() | 1 | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() |
![]() | ↘ | 极小值 | ↗ |