题目内容
19.小米和兰亭定于早10点至11点在钟楼书店门口见面,为避免浪费时间,约定先到者只等10分钟,他们见面的概率为$\frac{11}{36}$.分析 从早10点开始计时,设甲经过x分钟到达,乙经过y分钟到达,可得x、y满足的不等式线组对应的平面区域为如图的正方形OABC,而甲乙能够见面,x、y满足的平面区域是图中的六边形OEFBGH.分别算出图中正方形和六边形的面积,相除即可得到两人能见面的概率.
解答 解:从早10点开始计时,设甲经过x分钟到达,乙经过y分钟到达,则
x、y满足$\left\{\begin{array}{l}{0≤x≤60}\\{0≤y≤60}\end{array}\right.$,作出不等式组对应的平面区域,
得到图中的正方形OABC,
若甲乙能够见面,则x、y满足|x-y|≤10,
该不等式对应的平面区域是图中的六边形OEFBGH
∵S正方形OABC=60×60=3600,
S六边形OEFBGH=S正方形OABC-2S△AEF=1100
因此,甲乙能见面的概率P=$\frac{11}{36}$.
故答案为:$\frac{11}{36}$.
点评 本题给出两人相约,求它们能碰面的概率.着重考查了几何概型及其计算公式等知识,属于基础题.
练习册系列答案
相关题目
10.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(sinα,cosα),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan2α=( )
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
7.如图,是一个几何体的三视图,其中主视图、左视图是直角边长为2的等腰直角三角形,俯视图为边长为2的正方形,则此几何体的表面积为( )
A. | 8+4$\sqrt{2}$ | B. | 8+4$\sqrt{3}$ | C. | $6+6\sqrt{2}$ | D. | 8+2$\sqrt{2}$+2$\sqrt{3}$ |
14.一个几何体的三视图如图所示,则这个几何体的外接球的表面积为 ( )
A. | $\frac{4π}{3}$ | B. | $\frac{8π}{3}$ | C. | 4π | D. | 2π |
4.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$,(n≥2,n∈N),则a11的值为( )
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
8.化简$\frac{\sqrt{3}}{4}$tan10°+sin10°=( )
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |