题目内容
【题目】已知函数,函数.
(1)若,求曲线在点处的切线方程;
(2)若函数有且只有一个零点,求实数的取值范围;
(3)若函数对恒成立,求实数的取值范围.(是自然对数的底数,)
【答案】(1);(2);(3).
【解析】
(1)代入a值,求函数的导数,由导数的几何意义求得切线斜率,根据点斜式可得切线方程;(2)求导数,通过讨论a的范围,求函数单调区间,结合函数单调性和函数的最值可求a的范围;(3)求g(x)解析式,求函数导数,讨论函数单调性,由函数单调性和最值可确定a的范围.
(1)当时,,则,所以,
所以切线方程为.
(2),
①当时,恒成立,所以单调递增,
因为,所以有唯一零点,即符合题意;
②当时,令,解得,列表如下:
- | 0 | + | |
极小值 |
由表可知,.
(i)当,即时,,所以符合题意;
(ii)当,即时,,
因为,且,所以,
故存在,使得,所以不符题意;
(iii)当,即时,,
因为,
设,
则,
所以单调递增,即,所以,
又因为,所以,
故存在,使得,所以不符题意;
综上,的取值范围为.
(3),则,
①当时,恒成立,所以单调递增,
所以,即符合题意;
②当时,恒成立,所以单调递增,
又因为
,
所以存在,使得,
且当时,,即在上单调递减,
所以,即不符题意;
综上,的取值范围为.
【题目】为了调查某品牌饮料的某种食品添加剂是否超标,现对该品牌下的两种饮料一种是碳酸饮料含二氧化碳,另一种是果汁饮料不含二氧化碳进行检测,现随机抽取了碳酸饮料、果汁饮料各10瓶均是组成的一个样本,进行了检测,得到了如下茎叶图根据国家食品安全规定当该种添加剂的指标大于毫克为偏高,反之即为正常.
(1)依据上述样本数据,完成下列列联表,并判断能否在犯错误的概率不超过的前提下认为食品添加剂是否偏高与是否含二氧化碳有关系?
正常 | 偏高 | 合计 | |
碳酸饮料 | |||
果汁饮料 | |||
合计 |
(2)现从食品添加剂偏高的样本中随机抽取2瓶饮料去做其它检测,求这两种饮料都被抽到的概率.
参考公式:,其中
参考数据: