题目内容
设函数
定义在
上,对于任意实数
,恒有
,且当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024885517.png)
(1)求证:
,且当
时, ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024947581.png)
(2)求
在
上的单调性.
(3)设集合
,
,且
,
求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024760561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024776303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024791435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024823844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024869383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024885517.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024916482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024932391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024947581.png)
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024760561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024776303.png)
(3)设集合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010250251346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025041842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025057593.png)
求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025072267.png)
(1)见解析;(2)
在
上是减函数. (3)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025181447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024776303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025291417.png)
试题分析:(1)证明:取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025322394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025337393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025353497.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025384712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025400507.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024932391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025447397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025462534.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025478808.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010255091006.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024947581.png)
(2)任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025540568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025571429.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025587525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025603732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010256181859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025649759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025665919.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025681722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025696673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025727473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024776303.png)
解(3)在集合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025759300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025774996.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025805920.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025821487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001024776303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025868714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010258831075.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025915627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001025930438.png)
点评:不给出具体解析式,只给出函数的特殊条件或特征的函数即为抽象函数。一般的:①求抽象函数的函数值常用赋值法。②证明抽象函数的单调性常用定义法。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目