题目内容
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224074024021.png)
(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=
,BC=2,求二面角A—A1C—B的余弦值的大小
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224074024021.png)
(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407417337.png)
(Ⅰ)详见解析;(Ⅱ)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407433432.png)
试题分析:(Ⅰ)主要利用线线平行可证线面平行;(Ⅱ)通过作平行线转化到三角形内解角;当然也可建系利用空间向量来解;
试题解析:(Ⅰ)证明:连接AB1,
∵四边形A1ABB1是矩形,点M是A1B的中点,
∴点M是AB1的中点;∵点N是B1C的中点,
∴MN//AC,∵MN
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407449276.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407464214.png)
∴MN//平面ABC 6分
(Ⅱ)解 :(方法一)如图,作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407464592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407480435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224074954635.png)
由条件可知D是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407480435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407417337.png)
∴AB2+AC2= BC2,∴AB⊥AC,
∵AA1⊥AB,AA1∩AC=A,∴AB⊥平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407542522.png)
∴AB⊥A1C, ∴A1C⊥平面ABD,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407542595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407558507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224075731905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407589672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407605525.png)
在等腰
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407620581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407636315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407480435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407667659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407683527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407698671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407714607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224077291079.png)
∴二面角A—
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407480435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407433432.png)
(方法二)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407776235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407807663.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407823752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407839461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408010545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408026493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408041695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408073536.png)
如图,建立空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224080885156.png)
则A(0,0,0), B(0,1,0), C(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407417337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022407417337.png)
如图,可取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408135733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408151467.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408166521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408182679.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224082131205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408229844.png)
则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408244607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408260649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224082751428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408291624.png)
可求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022408322870.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240224083381267.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目