ÌâÄ¿ÄÚÈÝ

10£®¹ØÓÚº¯Êýf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©£¬Ôò
¢Ùy=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£»
¢Úy=f£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{24}$£¬$\frac{11¦Ð}{24}$]ÉÏÊÇÔöº¯Êý£»
¢Ûµ±x1-x2=¦Ðʱ£¬f£¨x1£©=f£¨x2£©£»
¢Üº¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{24}$£¬0£©¶Ô³Æ£»
¢Ý½«º¯Êýy=$\sqrt{2}$cos2xµÄͼÏóÏòÓÒƽÒÆ$\frac{5¦Ð}{24}$¸öµ¥Î»ºóÓ뺯Êýf£¨x£©µÄͼÏóÖغϣ®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ۢܣ®£¨ÌîÉÏËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

·ÖÎö ÀûÓÃÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óû¯¼òº¯Êý½âÎöʽ¿ÉµÃf£¨x£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{12}$£©£®
ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ¿ÉÅжϢÙÕýÈ·£»
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{12}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£¬Ò×Ö¤¢Ú´íÎó£»
µ±x1-x2=¦Ðʱ£¬¿ÉÇóf£¨x1£©=f£¨x2+¦Ð£©=f£¨x2£©£®¿ÉÅжϢÛÕýÈ·£»
ÓÉ2x-$\frac{¦Ð}{12}$=k¦Ð£¬k¡ÊZ¿É½âµÃº¯Êý¶Ô³Æµã¿ÉÅжϢÜÕýÈ·£»
¸ù¾ÝÈý½Çº¯ÊýͼÏóµÄƽÒƱ任¹æÂɼ´¿ÉÅжϢݴíÎó£®

½â´ð ½â£ºf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©=cos£¨2x-$\frac{¦Ð}{3}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{3}$+$\frac{¦Ð}{4}$£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{12}$£©£®
y=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£¬¢ÙÕýÈ·£»
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{12}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£º[k¦Ð-$\frac{5¦Ð}{24}$£¬k¦Ð+$\frac{7¦Ð}{24}$]£¬k¡ÊZ£¬Ò×Ö¤¢Ú´íÎó£»
µ±x1-x2=¦Ðʱ£¬f£¨x1£©=f£¨x2+¦Ð£©=$\sqrt{2}$sin[2£¨x2+¦Ð£©-$\frac{¦Ð}{12}$]=$\sqrt{2}$sin£¨2x2+2¦Ð-$\frac{¦Ð}{12}$£©=$\sqrt{2}$sin£¨2x2-$\frac{¦Ð}{12}$£©=f£¨x2£©£®¹Ê¢ÛÕýÈ·£»
ÓÉ2x-$\frac{¦Ð}{12}$=k¦Ð£¬k¡ÊZ¿É½âµÃº¯Êý¶Ô³ÆµãΪ£º£¨$\frac{k¦Ð}{2}+\frac{¦Ð}{24}$£¬0£©£¬k¡ÊZ£¬µ±k=0ʱ£¬¢ÜÕýÈ·£»
½«º¯Êýy=$\sqrt{2}$cos2xµÄͼÏóÏòÓÒƽÒÆ$\frac{5¦Ð}{24}$¸öµ¥Î»ºóµÃµ½º¯Êý½âÎöʽ£ºy=$\sqrt{2}$cos[2£¨x-$\frac{5¦Ð}{24}$£©]=$\sqrt{2}$cos£¨2x-$\frac{5¦Ð}{12}$£©=$\sqrt{2}$sin£¨2x+$\frac{¦Ð}{12}$£©£¬¹Ê¢Ý´íÎó£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø