题目内容
(本小题满分12分)
如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.
如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.
(1)(2)当时,面积的最大值为.
试题分析:因为点在椭圆上,所以
(2)设,
设直线,由,得:
则
点到直线的距离
当且仅当
所以当时,面积的最大值为.
点评:解决该试题的关键是利用向量的数量积和点在曲线上得到a,b,c的关系式,进而得到方程。同时能利用联立方程组,结合韦达定理来表示弦长,结合点到直线的距离求解最值,属于中档题。
练习册系列答案
相关题目