题目内容
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.
(1)证明过程详见解析;(2).
试题分析:本题主要考查同位角、弦切角、相似三角形、切线的性质、切割线定理等基础知识,考查学生的逻辑推理能力、分析问题解决问题的能力、转化能力.第一问,先利用同位角相等得到∠PAB=∠AQC,再利用弦切角相等,得到,同理,AQ为切线,则∠QAC=∠CBA,所有得到三角形相似,利用相似得性质得边的比例关系;第二问,由AB//CQ,利用平行线的性质得,得到QC和PC的长,利用切线的性质,得,,得到QD的值.
(1)因为AB∥CD,所以∠PAB=∠AQC, 又PQ与圆O相切于点A,所以∠PAB=∠ACB,
因为AQ为切线,所以∠QAC=∠CBA,所以△ACB∽△CQA,所以,
所以 5分
(2)因为AB∥CD,AQ=2AP,所以,由AB=,BP=2得,PC=6
为圆O的切线
又因为为圆O的切线 10分
练习册系列答案
相关题目